skip to main content


Search for: All records

Creators/Authors contains: "Aleisa, Rashed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    The fast and reversible switching of plasmonic color holds great promise for many applications, while its realization has been mainly limited to solution phases, achieving solid‐state plasmonic color‐switching has remained a significant challenge owing to the lack of strategies in dynamically controlling the nanoparticle separation and their plasmonic coupling. Herein, we report a novel strategy to fabricate plasmonic color‐switchable silver nanoparticle (AgNP) films. Using poly(acrylic acid) (PAA) as the capping ligand and sodium borate as the salt, the borate hydrolyzes rapidly in response to moisture and produces OHions, which subsequently deprotonate the PAA on AgNPs, change the surface charge, and enable reversible tuning of the plasmonic coupling among adjacent AgNPs to exhibit plasmonic color‐switching. Such plasmonic films can be printed as high‐resolution invisible patterns, which can be readily revealed with high contrast by exposure to trace amounts of water vapor.

     
    more » « less
  3. Abstract

    The fast and reversible switching of plasmonic color holds great promise for many applications, while its realization has been mainly limited to solution phases, achieving solid‐state plasmonic color‐switching has remained a significant challenge owing to the lack of strategies in dynamically controlling the nanoparticle separation and their plasmonic coupling. Herein, we report a novel strategy to fabricate plasmonic color‐switchable silver nanoparticle (AgNP) films. Using poly(acrylic acid) (PAA) as the capping ligand and sodium borate as the salt, the borate hydrolyzes rapidly in response to moisture and produces OHions, which subsequently deprotonate the PAA on AgNPs, change the surface charge, and enable reversible tuning of the plasmonic coupling among adjacent AgNPs to exhibit plasmonic color‐switching. Such plasmonic films can be printed as high‐resolution invisible patterns, which can be readily revealed with high contrast by exposure to trace amounts of water vapor.

     
    more » « less
  4. Abstract

    Herein, we show that copper nanostructures, if made anisotropic, can exhibit strong surface plasmon resonance comparable to that of gold and silver counterparts in the near‐infrared spectrum. Further, we demonstrate that a robust confined seeded growth strategy allows the production of high‐quality samples with excellent control over their size, morphology, and plasmon resonance frequency. As an example, copper nanorods (CuNRs) are successfully grown in a limited space of preformed rod‐shaped polymer nanocapsules, thereby avoiding the complex nucleation kinetics involved in the conventional synthesis. The method is unique in that it enables the flexible control and fine‐tuning of the aspect ratio and the plasmonic resonance. We also show the high efficiency and stability of the as‐synthesized CuNRs in photothermal conversion and demonstrate their incorporation into nanocomposite polymer films that can be used as active components for constructing light‐responsive actuators and microrobots.

     
    more » « less
  5. Abstract

    Herein, we show that copper nanostructures, if made anisotropic, can exhibit strong surface plasmon resonance comparable to that of gold and silver counterparts in the near‐infrared spectrum. Further, we demonstrate that a robust confined seeded growth strategy allows the production of high‐quality samples with excellent control over their size, morphology, and plasmon resonance frequency. As an example, copper nanorods (CuNRs) are successfully grown in a limited space of preformed rod‐shaped polymer nanocapsules, thereby avoiding the complex nucleation kinetics involved in the conventional synthesis. The method is unique in that it enables the flexible control and fine‐tuning of the aspect ratio and the plasmonic resonance. We also show the high efficiency and stability of the as‐synthesized CuNRs in photothermal conversion and demonstrate their incorporation into nanocomposite polymer films that can be used as active components for constructing light‐responsive actuators and microrobots.

     
    more » « less